Weakly maximal subgroups in regular branch groups
نویسندگان
چکیده
منابع مشابه
Maximal Subgroups of Finite Groups
What ingredients are necessary to describe all maximal subgroups of the general finite group G? This paper is concerned with providing such an analysis. A good first reduction is to take into account the first isomorphism theorem, which tells us that the maximal subgroups containing a given normal subgroup N of G correspond, under the natural projection, to the maximal subgroups of the quotient...
متن کاملMaximal Subgroups of Symmetric Groups
A theorem of O’Nan and Scott [6]; [2, Chapter 4] restricts the possibilities for maximal subgroups of finite symmetric groups: they are of six types of which the first four are explicitly known, the fifth involves a finite simple group, and the sixth an action of a simple group. This result, in conjunction with the Classification of Finite Simple Groups, has a number of consequences. In particu...
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملWeakly Closed Unipotent Subgroups in Chevalley Groups
The aim of this note is to classify all weakly closed unipotent subgroups in the split Chevalley groups. In an application we show under some mild assumptions on the characteristic that 2 dimX + dim cg(X) < dim g for X a non-trivial unipotent subgroup of the connected simple algebraic group G. This shows the failure of the analogue of the so called “2F-condition” for finite groups for the adjoi...
متن کاملOn weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.02.009